On the dimension group of unimodular $${\mathcal {S}}$$-adic subshifts

نویسندگان

چکیده

Dimension groups are complete invariants of strong orbit equivalence for minimal Cantor systems. This paper studies a natural family systems having finitely generated dimension group, namely the primitive unimodular proper $${\mathcal {S}}$$ S -adic subshifts. They by iterating sequences substitutions. Proper substitutions such that images letters start with same letter, and similarly end letter. includes various classes subshifts as Brun or dendric subshifts, in turn include Arnoux–Rauzy coding interval exchange transformations. We compute their group investigate relation between triviality infinitesimal subgroup rational independence letter measures. also introduce notion balanced functions provide topological characterization balancedness S-adic

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

uniform distribution theory MULTIDIMENSIONAL EFFECTIVE S - ADIC SUBSHIFTS ARE SOFIC

In this article we prove that multidimensional effective S-adic systems, obtained by applying an effective sequence of substitutions chosen among a finite set of substitutions, are sofic subshifts. Communicated by Pierre Liardet

متن کامل

Minimal Subshifts of Arbitrary Mean Topological Dimension

Let G be a countable infinite amenable group and P be a polyhedron. We give a construction of minimal subshifts of P with arbitrarily mean topological dimension less than dimP .

متن کامل

Bratteli-Vershik adic representations of some one-sided substitution subshifts

We study one-sided substitution subshifts, and how they can be respresented using BratteliVershik systems. In particular we focus on minimal recognizable substitutions such that the generated one-sided substitution subshift contains only one non-shift-invertible element (branch point), and we call these substitutions quasi-invertible. We characterise these substitutions, and show that if the su...

متن کامل

Topological Entropy Dimension and Directional Entropy Dimension for ℤ2-Subshifts

The notion of topological entropy dimension for a Z-action has been introduced to measure the subexponential complexity of zero entropy systems. Given a Z2-action, along with a Z2-entropy dimension, we also consider a finer notion of directional entropy dimension arising from its subactions. The entropy dimension of a Z2-action and the directional entropy dimensions of its subactions satisfy ce...

متن کامل

Topological Entropy Dimension and Directional Entropy Dimension for Z2-Subshifts

The notion of topological entropy dimension for a Z-action has been introduced to measure the subexponential complexity of zero entropy systems. Given a Z2-action, along with a Z2-entropy dimension, we also consider a finer notion of directional entropy dimension arising from its subactions. The entropy dimension of a Z2-action and the directional entropy dimensions of its subactions satisfy ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Monatshefte für Mathematik

سال: 2021

ISSN: ['0026-9255', '1436-5081']

DOI: https://doi.org/10.1007/s00605-020-01488-3